Journal of Chromatography, 128 (1976) 149-153

© Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM. 9189

INFLUENCE OF DRYING TEMPERATURE ON THE ION-EXCHANGE PROPERTIES OF STANNIC TUNGSTOARSENATE

II. SEPARATION OF Hg2+ AND Pb2+ AND OF Al3+ AND Ca2+

M. QURESHI, V. SHARMA, R. C. KAUSHIK and T. KHAN

Chemistry Department, Z.H. College of Engineering, Aligarh Muslim University, Aligarh (India) (First received December 9th, 1975; revised manuscript received March 5th, 1976)

SUMMARY

Stannic tungstoarsenate has been dried at 500° , and K_d values have been determined on this material for 21 cations in distilled water, acetone–0.1 M HNO₃ (1:9 and 2:3) and acetic acid-sodium acetate (2:2, 2:4 and 4:2). Quantitative separations of Ca²⁺ and Al³⁺ and of Hg²⁺ and Pb²⁺ have been achieved. Infrared spectra show that there is no chemical change in the material on heating to 500° .

INTRODUCTION

The synthesis and ion-exchange properties of stannic tungstoarsenate have been described earlier¹. Stannic tungstoarsenate has promising cation-exchange properties, an outstanding thermal stability, high uptake of certain cations and good resistance to water and dilute acid. It is necessary to study its ion-exchange properties after drying at high temperature so that its usefulness at these temperatures may be elucidated.

In this paper we describe the effect of drying temperature on the ion-exchange properties of stannic tungstoarsenate.

EXPERIMENTAL

Reagents

Sodium arsenate heptahydrate, sodium tungstate and stannic chloride pentahydrate (pure, Poland, Gliwice, Poland) were used.

Apparatus

A Sico temperature-controlled shaker was used. A muffle furnace was used for heating the ion exchanger at different temperatures. In the case of ¹³⁴Cs, γ counting was carried out on a scintillation counter; a Geiger-Muller counter was used for β counting in the case of ⁸⁶Rb.

Procedure

Stannic tungstoarsenate was prepared under the same conditions as given in the earlier paper¹. It was heated further at 500° for 2 h in the muffle furnace.

Ion-exchange studies

The ion-exchange capacity of stannic tungstoarsenate heated to 500° was 0.31 mequiv./g. K_d values for 21 metal ions were determined in different solvent systems on this exchanger. The equation used is

$$K_d = \frac{I - F}{F} \cdot \frac{50}{0.5} \, \text{ml/g}$$

where I is the volume of $0.002\,M$ ethylenediaminetetraacetic acid (EDTA) needed to titrate the original cation solution and F is the volume of $0.002\,M$ EDTA used for titration after the equilibration; the total volume of equilibrating solution was 50 ml. The amount of the exchanger used was $0.5\,g$. The loading of the cations was less than $3\,\%$ of the ion-exchange capacity of the exchanger.

RESULTS

The colour of stannic tungstoarsenate after heating at 500° is dirty white. A column was filled with the exchanger and then washed successively with dilute nitric acid and water. The following quantitative separations were achieved.

Separation of Hg2+ from Pb2+

A mixture of Hg^{2+} and Pb^{2+} was applied to the column. The effluent was recycled three times on the column. Hg^{2+} was eluted with 0.5% NH_4NO_3 in 0.001 M HNO₃ at a flow-rate of 7-8 drops per minute; Pb^{2+} was eluted with 1% NH_4NO_3 in 1 M HNO₃ (Fig. 1).

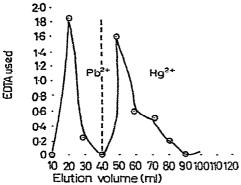


Fig. 1. Separation of Hg2+ from Pb2+.

Separation of Ca2+ from Al3+

First the column was saturated with 10% acetone. Then a mixture of Ca²⁺ and Al³⁺ was applied to the column. Ca²⁺ was eluted with 1% NH₄NO₃ in 1 M HNO₃ (Fig. 2).

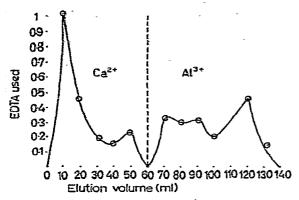


Fig. 2. Separation of Ca2+ from Al3+.

DISCUSSION

Table I shows that a number of interesting separations are possible in acetone-nitric acid on the sample heated to 500°. Some of the more important are as follows: Al³⁺-Fe³⁺, Mn²⁺-Al³⁺, Ca²⁺-Al³⁺, Ni²⁺-Mn²⁺, Hg²⁺-Pb²⁺, Ca²⁺-Ba²⁺, Cu²⁺-Ni²⁺ and La³⁺-Ga³⁺. Out of these Ca²⁺-Al³⁺ and Hg²⁺-Pb²⁺ have been successfully separated on the column. As the proportion of acetone was increased, the

TABLE I K_{ℓ} VALUES (ml/g) OF METAL IONS ON STANNIC TUNGSTOARSENATE PREVIOUSLY HEATED TO 500°

Cation	K_d (ml/g) (acetone=0.1 M HNO ₃)			
	(1:9)	(2:3)		
Mg ²⁺	0	1		
Ca2+	0	17		
Sr2+	66	17		
Ba ²⁺	92	40		
Zn^{2+}	58	14		
Cd2+	17	24		
Cu ²⁺	70	112		
Ni ²⁺	7189	18900		
Mn²÷	3	247		
Fe³÷	0	12700		
Al³÷	7600	1953		
Y3+	53	260		
La ³⁺	0	153		
Pr³+	193	250		
Sm³÷	105	175		
Gď³÷	235	320		
Dy ³⁺	195	370		
Er³+	107	103		
Pb ² +	66	1286		
Hg²÷	7149	500		
Th ⁴⁺	281	133		

TABLE II K_c VALUES OF METAL IONS ON STANNIC TUNGSTOARSENATE PREVIOUSLY HEATED TO 500° IN DEMINERALIZED WATER

Cation	K_d (ml/g)	
Mg ²⁺	531	
Ca ²⁺	350	
Sr2+	6900	
Ba ²⁺	4340	
Zn^{2+}	1532	
Cd2+	2040	
Cu ²⁺	561	
Ni ²⁺	200	
Mn ²⁺	1340	
Fe ³⁺	265	
Al^{3+}	1440	
Y3+	4160	
La ³⁺	22300	
Pr³+	15300	
Sm³+	26100	•
Gd³+	27200	
Dy ³⁺	25700	
Er3+	25800	
Pb ²⁺	1970 .	
Hg ²⁺	26	
Th ⁴⁺	950	

TABLE III

 $\textit{K}_{\textrm{\tiny d}}$ values of metal ions on stannic tungstoars enate previously heated to 500°

Cation	K ₄ (ml/g) (0.1 M acetic acid-0.1 M sodium acetate)				
	(1:1)	(1:2)	(2:1)		
Mg ²⁺	365	, 132	762		
Ca^{2+}	2150	275	234		
Sr ²⁺	8700	346	877		
Ba ²⁺	788	1010	303		
Zn^{2+}	527	482	444		
Cd2+	4180	756	756		
Cu ²⁺	1780	1466	221		
Ni ²⁺	860	380	162		
$N_n^{r}n^{2+}$	620	440	276		
F≎³+	184	753	122		
Al³+	1744	670	20		
Y3+	21200	21200	21200		
La ³⁺	22300	21406	11100		
Pr3+	25300	464	25300		
Sm³+	246	1346	10380		
Gd3+	542	1720	542		
Dy ³⁺	312	665	545		
Er3+	396	640	204		
P5 ²⁺	360	720	1280		
Hg²+	0	20	339		
Th4+	162	260	0		

 K_d value of mercury decreased and an interesting reversal in the selectivity of Hg^{2+} and Pb^{2+} was observed. This occurs because Hg^{2+} is more covalent and hence is more soluble in acetone. For the same reason the uptake of Hg^{2+} from distilled water is very small (Table II). The K_d values of some metal ions were also determined in acetate buffers (Table III). When acetone-sodium acetate (1:2) was used the K_d values of alkaline-earth metals increased with increasing ionic radius. The K_d values of ⁸⁶Rb and ¹³⁴Cs were inversely proportional to temperature (Table IV).

Infrared spectra showed that there is no change in the structure of this ion exchanger on heating, and it is therefore very thermally stable (Fig. 3).

TABLE IV K_{ℓ} VALUES OF ⁸⁶Rb AND ¹³⁴Cs ON STANNIC TUNGSTOARSENATE AT DIFFERENT TEMPERATURES AT pH 2 (0.01 N HNO₃)

Cation	K _e				
	<i>25</i> °	<i>35</i> °	45°	55°	
86Rb	30.9	29.0	19.8	10.2	_
¹³⁴ Cs	47.7	25.9	22.0	12.0	

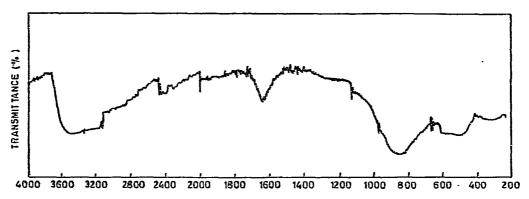


Fig. 3. Infrared spectrum of stannic tungstoarsenate.

ACKNOWLEDGEMENTS

We thank Professor W. Rehman for research facilities, Bhabha Atomic Research Centre (Bombay, India) for financial assistance and Dr. S. N. Tandon for helpful suggestions.

REFERENCE

1 M. Qureshi, R. Kumar, V. Sharma and T. Khan, J. Chromatogr., 113 (1976) 175.